PHYSICAL REVIEW E 78, 066213 (2008)

Solution of reduced equations derived with singular perturbation methods

Masatomo Iwasa
Department of Physics, Nagoya University, Nagoya 464-8602, Japan
(Received 8 September 2008; published 22 December 2008)

For singular perturbation problems in dynamical systems, various appropriate singular perturbation methods
have been proposed to eliminate secular terms appearing in the naive expansion. For example, the method of
multiple time scales, the normal form method, center manifold theory, and the renormalization group method
are well known. It is shown that all of the solutions of the reduced equations constructed with those methods
are exactly equal to the sum of the most divergent secular terms appearing in the naive expansion. For the
proof, a method to construct a perturbation solution which differs from the conventional one is presented,
where we make use of the theory of the Lie symmetry group.
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I. INTRODUCTION

This paper investigates perturbation analysis of the funda-
mental system of nonlinear ordinary differential equations,

—u:=u:Mu+£f(u), (1)
dt

where u e C" is the dependent variable, M is a constant n
X n matrix, f:C"—C" is a nonlinear function of u, and &
€ R is a perturbation parameter. In what follows, we refer to
u=Mu as the unperturbed system and (1) as the perturbed
system. The simplest perturbation solution is the naive ex-
pansion. Let us pose an expansion for the solution in powers
of e:

u(t;e) =, ePu?(t). ()
p=0

If we substitute Eq. (2) into Eq. (1), expand both sides of the
equation with respect to &, and equate the coefficients of
each power of €, then we obtain the following series of dif-
ferential equations:

19 = A © ,

i = Mu® + fr @ O Py for p=1,2, ...,

3)

where

f(§ s”u(”)) — 5“ sp]&:)(u(()),u(l), ,u(”)). (4)

p=0 p=0

If we solve these equations recursively, we find the naive
expansion.

In this paper, we are especially interested in singular per-
turbation problems where secular terms arise in the naive
expansion. In general, if f(u) is a power series, secular terms
arise in the naive expansion as we see later. To eliminate
those secular terms, various appropriate methods are devel-
oped such as, for example, the renormalization group method
[1-6], the method of multiple time scales [7], canonical
Hamiltonian perturbation theory [8], averaging methods [9],
the method of normal forms [7], center manifold theory [10],
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and so on. We refer to these methods simply as singular
perturbation methods in this paper. It is well known that all
of these methods result in equations all of which are equiva-
lent that govern the long-time behavior of the system. Each
of them is the dynamics for integral constants of an unper-
turbed system, or in other words, dynamics in the null space
of the linear operator determined from the unperturbed sys-
tem. Although the name of that equation such as the renor-
malization group equation or the normal form depends on the
method, in this paper, we refer to it simply as the reduced
equation.

There have been many studies which show that those sin-
gular perturbation methods surely lead to the well-behaving
approximate solution. However, what the solution of that re-
duced equation exactly includes has not been clear. In this
paper, we reveal the exact solution of the reduced equation.
To be precise, the following statement is the main result
shown in this paper.

Main result: the solution of the reduced equation up to
first order for singular perturbation problem (1) is equal to
sum of those terms which are proportional to et, 22,83,
in the naive expansion.

In what follows, we refer to those secular terms as the
most divergent terms in the naive expansion. Although this
fact has been believed to be true in some cases [11], this is
rigorously proved in this paper.

In the proof of the result, we first present another method
to construct a perturbation solution—that is, Proposition 1 in
Sec. II. While 7 in Eqgs. (3) must be more complicated
function of u®,uM, ... ,u' as p becomes large in general.
The method presented in Sec. II leads to another recursive
equation which has a clearer expression compared with Eqs.
(3). In the derivation of those recursive equations, we make
use of the Lie symmetry group which leaves the system, Eq.
(1), invariant. This method can be interpreted as an extension
of the renormalization group method with Lie symmetry
group [6]. The recursive equation plays an important role in
Sec. III for the proof of the main result.

II. METHOD TO CONSTRUCT A PERTURBATION
SOLUTION

Consider the system of nonlinear ordinary differential
equations as follows:
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Z—z:u=Mu+sf(u), (5)

where u=u(r) e C" is a vector-valued function of an indepen-
dent valuable, M is an n X n matrix whose coefficients are
constant, € is a constant, and f:C"— C" is a smooth vector-
valued function. In what follows, we refer to u=Mu as the
unperturbed system and (5) as the perturbed system, and the
solution of the system (5) is denoted by u=u(r;&) for the
dependence to the perturbation parameter &.

First, let us find a method to construct a perturbation so-
lution. For the construction, we make use of the Lie symme-
try method [12].

Proposition 1. Suppose (t,u;e) e C" is a vector-valued
function of ¢, u, and ¢ and its formal expansion in powers of
e, t,ue) =:Ei°=08’¢(’)(t,u), is admitted. Then, for
(t,u;e) which satisfies the recursive differential equations

Ly =,
Ly =y Vo, f~fa 0, forr=1,23,...,
L= 1[0+ Mu)a,]-M, (6)

the solution of system (5) satisfies

u(tse) = u(t;0) + >, fﬁ oY (t,u(r;0))do. (7)
r=0+Y0

Here I in the definition of L denotes the identity matrix.
Proof. Suppose Eq. (5) admits a Lie symmetry group
whose infinitesimal generator is denoted by

X:=0d,+ t,u;e)d,. (8)
Then its prolongation X*,

X* =9, + Yt,u;8)d, + Y(t,u,1;€)d,,

P(tuise) = [0, +1i 9, Jy(t,use), 9)

satisfies the infinitesimal criterion of invariance of system
(5)—that is,

X* [ﬂ—MM—8f(M)]|Eq. 5)=0. (10)
Equation (10) reads
(9, + (Mu)d,)p— My~ f1+ elf 9,4 = ¢ 3,f1=0.

(11)
For the formal expansion in powers of &,
Wtuse) = 2 &'y (), (12)
r=0

by substituting Eq. (12) into Eq. (11) and equating the coef-
ficient of each &”, we find recursive equations as follows:

LyO=Ff, (13)
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Ly =g Vo f-fap], forr=1,2, ...,

L:=1{d,+ (Mu)d,]-M. (14)

Solving Egs. (13) and (14) recursively, we obtain a formal
expansion of the infinitesimal generator of a Lie symmetry
group which leaves the system (5) invariant. Then the solu-
tion of the system (5), u=u(¢;€), invariant to X satisfies

X [u—u(t;8)]|smu(re) = 0- (15)

Equation (15) reads
J

O,)—u(t;s) = (tu(t:e);¢e), (16)
e

sulte)=ut;0) + 2, 8 d Yt u(t;o))do.  (17)

r=0 Y0

Thus, the integral equation (7) for solution of the system (5)
has been obtained. |

It should be remarked here that it is not necessary for € to
be small in this proposition. Therefore, Eq. (16) holds not
only for perturbed systems, but also for generic systems
which take the form of Eq. (5), although it seems to be prac-
tical for perturbation problems.

III. SOLUTION OF REDUCED EQUATIONS

Next, consider those systems whose linear part can be
diagonalized. Then the system (5) reads

i=Az+eg(z), zel (18)

with a linear transformation from u into z. Here A is an n
Xn diagonal matrix whose components are denoted by
A;;j=: 6;\;, and g is the nonlinear vector-valued function con-
structed from f with the transformation. Then the recursive
equations corresponding to Egs. (6) become

0
Li¢§ )=gi’

n
Li(;bz(r) = 2 [¢§'r_1)azfgi - gj&zigbl('r_l)]’ for r= 1»29 ceey
j=1 ' ‘

L= (a,+ > xkzkazk) -\ (19)

k=1

for a vector-valued function, ¢(z,z;¢) € C* for r=0,1,... .
Here and in what follows, the components of vectors and
matrices are explicitly denoted for clarification of the follow-
ing discussion, and equations hold for i=1,...,n. In the
same way we have derived Eq. (7), it follows that the solu-
tion of Eq. (18), z=z(¢;¢), satisfies

z(t:€) = 2(1:0) + >, as’qb?’)(t,z(t;s))ds. (20)
r=0 Y0

As we see later, if we obtain {¢")(z,z)}, we can construct the
naive expansion using Eq. (20) with the iterative method
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since we know the solution of the unperturbed system,
z(t;0)=eMz, where z, is a constant.
Now we can show the following proposition.
Proposition 2. Suppose the nonlinear function in Eq. (18)
is power series such as

o0

8i(2) = 2

P1sP2s - D=0

plpz Py sz ’ 1)

where each C' is constant. Then there is a solution of

PPy Py
Egs. (19) Wthh becomes power series of ¢ and z which sat-
isfies ¢\”=0(t") for r=1,2,..., while ¢”=0(r).

Proof. First, we seek ¢©) Accordmg to Egs. (19), it is the

solution of the differential equation

o

Lid)z@)(t’z) = 2

P1:P2s- - Py=0

(o— H 2k, (22)

Note that, for arbitrary (py,p,,....p,) e N, II[_ % are
eigenfunctions of L, Among inhomogeneous terms on the
right-hand side (rhs), those which satisfy the resonance con-
dition E 1Ajpj—N\;=0 cause secular terms in the solution.
Then we obtaln

0
¢f )(Z‘,Z)= E p1p2 ptHZp
P1:P2s--Pn
S Njpih=0
Ci n
PPy P
D et | NN e
prpapn Zj=INP Nijor
SN0

Next, we seek d)('). According to Egs. (19), it is the solution
of the differential equation

Lig" = 2 (40, g:- g0 $"]. (24)
j=0

By virtue of ¢, the inhomogeneous terms in Eq. (24) can
be split into four parts as

[rhs of Eq. (24)]= >
P1:P2s--sPn
ZiNphi=0

+ 2 Plpz

P1:P2>- - Pn
n
i\ jpihi#0

+ 2
P1:P2s-Pp

SN0

+ E I’]Pz

P1sP2s - Pn

SN0

Pj
plpz Py tH Zj

IH zpf

i
P|1’2 P ]'_[ Z

Hz”f, (25)
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i i
for some constants { P2y D, ,Fplp2 Gp1p2 P, H1’1I’2"'l’n}'

All terms in the first part seem to cause secular terms in ¢!
which are proportional to #? since each of them satisfies reso-
nance condition. However, we can show that the first part
vanishes by substituting Eqs. (21) and (23) into the right-
hand side of Eq. (24) and calculating {E;,l », Apn}. The calcu-
lation is found in Appendix concretely. Therefore, the most
divergent terms in ¢'") are not proportional to 72, but propor-
tional to 7. For r=2,3,..., inhomogeneous terms in Eq. (19)
which are proportional to ! and which satisfy the reso-
nance condition remain in general. Then those inhomoge-
neous terms cause secular terms proportional to 7 in ¢\l
Now we can find the solution of reduced equations which
result from various singular perturbation methods.
Corollary. For the system of differential equations,

dz(t;e
EEE 1 g0c:e). 26)
with z(7;0) denoting the solution of the unperturbed system,
the solution is equal to sum of terms proportional to
gt,e’t?,...,&"t",... in the naive expansion of the system
(18). Here qﬁ(o is split into ¢ (r,z) = t‘f’m(Z)""ﬁfS;)n(Z) by
virtue of Eq. (23).
Proof. According to Eq. (20),

z2(t;8) = z(£;0) + J ' t¢§f_,’2.(z(t;a))dcr+ J ¢m)n(Z(t 0))do
0

+ fsscb(l)(t,z(t;a))d0'+f£
0 0

oo (27)

22 (t,z(1;0))do

Thanks to this self-consistent integral equation, we can con-
struct the naive expansion with the iterative method. In terms
of Proposition 2, it follows that terms proportional to
et,e**, ..., e"",... in the naive expansion arise only from
the term [5r¢\°)(t; o)do among terms on the right-hand side
of Eq. (27) any step of the iteration. Therefore, the solution
of the following equation (29) is exactly equal to the sum of
terms proportional to et, e, ..., &"",... in the naive expan-
sion:

2(t:8) = 2(1;0) + f ’ 10 (z(t;0))dor, (28)
0

azfj ) _ 0 c(r:6)). (29)

where we adopt the solution of the unperturbed system as
z(z,0). [ |

To complete the proof of the main result, we have to show
various the widely accepted reduced equations is equivalent
to Eq. (26). As a result of singular perturbation methods, we
obtain reduced equations such as
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% = sz.(yiz\(z(t;s)), (30)

where z() denotes the coefficient of & in the naive expansion
and we set z)(z,7) = tzgg(z )42 (20). Equation (30) is
a normal-form expression of the reduced equations. Al-
though the well-known normal form contains a linear part [7]

such as

07(t;€)

= AZ(t;6) + £V (E(1:)), (31)

Eq. (31) reads Eq. (32) under z:=exp(—Ar)Z. We can trans-
form Eq. (32) into a renormalization group equation or
equivalent reduced equations derived with other methods if
we adopt integral constants appearing in the solution of the
unperturbed system as dependent variables [1]. The equiva-
lence of the normal-form theory and the renormalization
group method is discussed in [13] in detail.
Equation (30) reads

(92(1‘ 8)

P CD) (32)

for the following reason: For the expanded form of the solu-
tion, z(t;8) = 3;_,e*z (1), z(V) satisfies

n

20 =00 + 8:O0) & (a, + zkw)&zl(P))z,(-l)(t,z(o))
k=1

=Nz M(1,29) + 4, = ((9 + E Az, 0=\, ) M
k_

X(1,2%) = g(2). (33)

Equation (33) corresponds to the first equation of (19) if we
replace z\) and 7@ with ¢© and z, respectively. With a new
independent valuable 7:= &t, both Egs. (26) and (32) can be
written as

dZ(T) $O (). (34)

Thus, we have shown that the solution of the reduced equa-
tions is equal to the sum of the most divergent terms in the
naive expansion when we construct the reduced equations up
to only first order.

IV. EXAMPLE: THE DUFFING EQUATION

Let us see what is shown above holds through a simple
example. Consider the Duffing equation

fi+u=eu. (35)

Introducing z:=u+iu for simplicity, we have

i
z'+iz=8§(z+z_)3. (36)
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First, let us review the proof of the main result with this
example. Suppose Eq. (36) admits the Lie symmetry group
whose infinitesimal generator is denoted by

X =, + 7(t,2,2;8) 0, + P(1,2,7;8) 0= (37)

Note that it can be shown (z,z,7;€)=4F(t,z,7;€). Then its
prolongation X*,

X* =0y + F(t,2,2;8) 0. + Y (1,2,7;8) 0+ ¢7(1,2,2,2,2;€) 0;

+ A (t,2,2,2,2;8) 0%,

YA(t,2,2,2.2:8) = [0, + 20, + 20:1yA(1,2,Z3 8),

= ¥(1,.2.5.2.58), (38)

satisfies the infinitesimal criterion of the invariance corre-
sponding to Eq (10):

i
X* {z’+iz—£—(z+2)3] =0. (39)
8 Eq. (36)
For the formal expanded form of ,
Y(t,2.258) = 2 8" yY(1,2.2), (40)
r=0
the equation for the leading order becomes
i
(0= iz0; + T+ DY) = e+ D’ (A1)

Solving this, we obtain
1 3i 1
O(t,2,2) =— —7° +gl 2+— +— 42
$(t,2,7) 6% l2] |Z|Z 321 (42)
The reduced equation corresponding to Eq. (26) becomes
dz(t,e)  3i
e T —flz(t e)lz(t;¢). (43)

With the integral equation expression corresponding to (28),
we can find the solution with iterative method. The solution
up to third order becomes

o 3i . 9 i
Z(t,e) =Ae™ + —18t|A|2Ae_" - —&’ A A
8 128

i 3rAIPAe™ 4 - - (44)
1024
where A denotes the integral constant. We can immediately
show this solution is exactly equal to the most divergent
terms in the naive expansion by constructing it directly.
Next, let us see Eq. (43) is equivalent to reduced equa-
tions derived with conventional singular perturbation meth-
ods. Although there are many ways to represent the reduced
equations, one of them is the normal form [7]

i iZ(f) + s%li(t)lzz‘(t), (45)
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which corresponds to (31). Under Z=:A(t)e™", Eq. (45) reads

dA()
dt

which corresponds to (30). If we set A(f) =: R(1)e™ ") where
R(1), 6(r) € R, the reduced equation reads

=2 AW, (46)

dR
=0 (47)
do 3
P ngz, (48)

which is called renormalization group equation [1,2]. Under
7:=gt, both Eq. (43) and Eq. (46) read

d 3
29 R apsts). (49)

Thus, equivalence has been shown for the Duffing equation.

V. CONCLUDING REMARKS

The main purpose of this paper has been the derivation of
an exact solution of the reduced equations which result from
singular perturbation methods. What has been shown is that
the solution of the reduced equations up to first order is equal
to the sum of the most divergent terms, which are propor-
tional to et,&2#?,&31>,... appearing in the naive expansion. In
other words, taking up to only first order with respect to
perturbation parameter is enough to include those most di-
vergent terms in the approximate solution. The main result
has been proved without any approximation. Then it holds
not only in the case where ¢ is small, although this result is
meaningful in the context of perturbation analysis.

Another result has been presented in this paper. That is a
method to construct a perturbation solution where we make
use of the Lie symmetry group which leaves the system in-
variant. With this method, we obtain recursive equations (6)
instead of Egs. (3).

For the future, it should be investigated how the approxi-
mation improves if higher-order terms are taken into consid-
eration when we construct the reduced equation. Another in-
terest is the application to systems of partial differential
equations (PDEs). In some PDE systems, it has been shown
that, in constructing reduced equations, we should take up
not only most divergent terms in the naive expansion, but
also other terms to preserve the symmetry of the original
system [14]. Therefore, the proof presented in this paper
should be modified properly to those systems.
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APPENDIX: THE CALCULATION OF E'

 ppen, INEQ. (25)

At first, we consider the first term on the right-hand side
of Eq. (24), qﬁ(o)& g Substituting Egs. (21) and (23) into Eq.
(24) and writing terms proportional to ¢, we obtain

0 .
¢§ )o"zjg’ = 2 I’11’2 tH Zpk

P1sP2s Py
iy =0

X&ZJ( 2 Ci11‘12 qHz)
192>

+ [terms not proportional to 1]. (A1)
Those terms which are zero elgenfunctlons of =} —oMZx,

—\, cause terms proportional to #* in ¢ (. Such terms on the
rlght hand side satisfy the resonance condition

E Nepic+ qi) + )\_,'[Pj + (C]j -1]-\=0, (A2)
k=1

k#j

which reads

> Mg —\i=0, (A3)

k=1

since 2j_\¢px—N;=0. Then, the resonant terms which are
proportional to ¢ on the right-hand side of Eq. (A1) become

/DY

P1:P2:---Pn
n
Ek=1)\kpk—)x_/-=0

>
. 41542 - -4p
o M N=0

plp2 an

‘1|42 qy HZ

(A4)

On the other hand, for the second term on the right-hand side
of Eq. (25), g/d, ¢<°>

gj&z_/n’m):( E C{hqz q,,Hz)

q1-92>

| =

Xa
P1:P2s Py
S Mprh=0

plpz Py tH %

+ [terms not proportional to f]. (A5)

The resonance condition in this case becomes
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n

2 Nepr+q) +N[(p; = 1) + ;] -\, =0, (A6)
k=1
k#j
which reads
n
2 Mgi— N =0, (A7)
k=1

since 27_;\pr—N;=0. Then, the resonant terms which are
proportional to 7 on the right-hand side of Eq. (A5) become
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n
i qk
! 2 quqZI ’ .an Zk
41925+ - -49n k=1
SioMdrN=0
n
xo | > Tl (A8)
“j PPy Py
P1:P2s Py k=1
S \epr=N=0

This is equal to Eq. (A4). Thus, it is shown that resonant
terms which are proportional to 7 in qu.")azjgi— g jﬁzi@o) for all
j and i are equal to zero. That is to say, all of {E;,lpz...pn} in
Eq. (25) are equal to zero.
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